Page Not Found
Page not found. Your pixels are in another canvas.
A list of all the posts and pages found on the site. For you robots out there is an XML version available for digesting as well.
Page not found. Your pixels are in another canvas.
About me
This is a page not in th emain menu
Call: Fondo Europeo de Desarrollo Regional (IN854A 2019/15)
Dates: -
El objetivo es desarrollar una fábrica más flexible, automatizada, social, colaborativa, conectada e inteligente, que responda ágilmente e incluso permita anticiparse a la demanda del mercado con criterios de sostenibilidad, transparencia y personalización.
Call: ICT-11-2018-2019 - HPC and Big Data enabled Large-scale Test-beds and Applications
Dates: -
Big data, artificial intelligence (AI) and Internet-of-Things (IoT) are essential in our data-driven environment – in all facets of daily life. However, many financial or insurance institutions still face difficulties using big data technology due to complicated regulations and the lack of testbed resources. The EU-funded INFINITECH project will undertake an innovative effort to boost regulatory compliance and enhance directed investments. Leaders in finance and ICT will aim to provide novel Big Data/IoT/AI technologies for managing and querying all kinds of data along with data governance capabilities. These disruptive tools will enhance innovations in business sectors and support nine novelty testbeds and sandboxes to offer open application programming interfaces (APIs).
Call: SC1-DTH-01-2019 - Big data and Artificial Intelligence for monitoring health status and quality of life after the cancer treatment
Dates: -
The transition from cancer patient to cancer survivor should be planned and coordinated to ensure patients receive high-quality, coordinated and personalised care. The EU-funded PERSIST project is developing a system that supports self-care and can identify outcomes that require professional intervention. Its system uses big data technology and novel analysis algorithms that can be easily integrated into electronic health records and other sources of clinical data. Overall, the project aims to improve the management, intervention and prevention strategies to reduce side effects and prevent secondary diseases. Its long-term goal is to reduce the socio-economic burden related to cancer survivors’ care by creating a dynamic decision support system and making maximum use of predictive models.
Call: Programa Estratégico de Consorcios de Investigación Empresarial Nacional (CIEN) (IDI-20210861)
Dates: -
El objetivo del proyecto SmartNOC es investigar en diversas tecnologías, técnicas, herramientas, metodologías y conocimientos dirigidos a desarrollar soluciones tecnológicas para la gestión inteligente y segura de los centros de control de redes de comunicaciones (NOC por sus siglas en inglés, Network Operation Center), tanto de operadores de comunicaciones como redes privadas de la Industria 4.0, las Smart Cities o las Infraestructuras críticas; para hacerlas más eficientes, fiables y seguras. Este proyecto facilitará la adopción de soluciones tecnológicas para una nueva generación de los centros de control de redes que proporcionen seguridad, eficacia, eficiencia y fiabilidad a los sistemas de información; mediante la investigación en tecnologías tales como IA, Big data, interfaces innovadoras o sistemas de almacenamiento.
Call: Red.es del Centro de Desarrollo Tecnologico e Industrial (2020/0720/000100025)
Dates: -
En SABOT se propone el desarrollo de una solución basada en técnicas de aprendizaje automático y estadísticas para, mediante el modelado del comportamiento de bots y usuarios legítimos poder detectar a los primeros y bloquear o minimizar su impacto. El modelado del comportamiento se realizará mediante la caracterización del mismo en base a un gran número de variables obtenidas, entre otras formas, por la ejecución de pequeños fragmentos de código, insertados en la web de comercio electrónico, tanto por los usuarios legítimos como por los bots. Tras la fase de desarrollo, la solución se pilotará en una pequeña empresa especializada en venta de material deportivo que en la actualidad sufre un grave impacto por los bots, tanto en recursos informáticos como en su estrategia comercial. La solución estará especialmente orientada al comercio electrónico de pequeñas y medianas empresas ya que se proporcionará como un producto, no como un servicio, y se licenciará en empresas ya que se proporcionará como un producto, no como un servicio, y se licenciará en base al tráfico legítimo, no en base al tráfico de los bots. De este modo se contribuirá al aumento de canales de venta online por parte de este tipo de empresas reduciendo la brecha con las grandes organizaciones.
Call: HORIZON-CL3-2021-CS-01-04 - Scalable privacy-preserving technologies for cross-border federated computation in Europe involving personal data
Dates: -
In recent years, Federated Learning (FL) has emerged as a revolutionary privacy-enhancing technology and, consequently, has quickly expanded to other applications. However, further research has cast a shadow of doubt on the strength of privacy protection provided by FL. Potential vulnerabilities and threats pointed out by researchers included a curious aggregator threat; susceptibility to man-in-the-middle and insider attacks that disrupt the convergence of global and local models or cause convergence to fake minima; and, most importantly, inference attacks that aim to re-identify data subjects from FL’s AI model parameter updates. The goal of TRUMPET is to research and develop novel privacy enhancement methods for Federated Learning, and to deliver a highly scalable Federated AI service platform for researchers, that will enable AI-powered studies of siloed, multi-site, cross-domain, cross border European datasets with privacy guarantees that exceed the requirements of GDPR. The generic TRUMPET platform will be piloted, demonstrated and validated in the specific use case of European cancer hospitals, allowing researchers and policymakers to extract AI-driven insights from previously inaccessible cross-border, cross-organization cancer data, while ensuring the patients’ privacy. The strong privacy protection accorded by the platform will be verified through the engagement of external experts for independent privacy leakage and re-identification testing. A secondary goal is to research, develop and promote with EU data protection authorities a novel metric and tool for the certification of GDPR compliance of FL implementations. The consortium is composed of 9 interdisciplinary partners: 3 Research Organizations, 1 University, 3 SMEs and 2 Clinical partners with extensive experience and expertise to guarantee the correct performance of the activities and the achievement of the results.
Call: Programa de Misiones de Ciencia e Innovación (MIG-20221051)
Dates: -
Debido a la tendencia actual de los ataques que sufre la industria y considerando las tecnologías inalámbricas que se deben ir progresivamente implantando (ahorro cuantioso en el despliegue de nuevos sistemas), el proyecto SecBluRed plantea una aproximación de investigación holística a la ciberseguridad para la IoT Industrial (IIoT, de ahora en adelante), que podría ser extensible a otros entornos tecnológicos industriales. Para ello, se proponen tres ejes de investigación:
Call: Compra Pública Precomercial CPP001/23. (CPP001-23-R006_SAFENET_UEBA)
Dates: -
The primary objective of the SafeNet UEBA project is the design and implementation of a Security Operations Center (SOC) that allows the detection of cyberattacks based on UEBA using statistical techniques and artificial intelligence (AI). The solution will enable the incorporation of a wide variety of data sources, which, once normalized and aggregated, will be used to construct a robust pattern of the behavior of users, devices, or entities. The detected threats will be enriched with external sources such as Indicators of Compromise using the MISP threat intelligence platform.
Call: Ayudas Cervera para Centros Tecnológicos (CER-20231019)
Dates: -
La adopción masiva de tecnologías de la información y telecomunicaciones está cambiando cómo nos relacionamos e interactuamos. Esto ha provocado, además de múltiples beneficios, un aumento de los riesgos asociados a la adopción de nuevas tecnologías, principalmente los generados por amenazas a la seguridad de la información o ciberamenazas que ponen en riesgo el crecimiento, sostenibilidad y modo de vida.
Call: HORIZON-CL3-2023-FCT-01 - Fighting Crime and Terrorism 2023
Dates: -
This project aims to develop an innovative and privacy-preserving decision-support system for European law enforcement authorities leveraging advanced Big Data and AI technologies to effectively combat crimes and terrorism. The proposed system integrates Federated Learning, User and Entity Behavior Analytics (UEBA), and other Big Data and AI techniques to monitor social network data, deep and shallow web information, and police databases in a secure, collaborative, privacy-aware and ethical manner. The primary objective is to help Law Enforcement Authorities (LEAs) fighting cybercrime and terrorism by identifying key communities and users involved in activities such as hate speech, child sexual abuse, terrorism, or drug trafficking and to use this information to better allocate police resources.
Published in 2017 International Carnahan Conference on Security Technology (ICCST), 2017
Biometric R&D has to deal with personal data. From the Universal Declaration of Human Rights, privacy of a human being shall be protected, and this is addressed in different forms in each region of the world. In the case of the European Union, Data Protection Directives, Laws and Regulation have been established, and interpreted in different ways by each European Member State. Such a diversity has pushed the European Union to generate an improved regulation that will be mandatory in 2018. Biometric R&D shall not only comply with the current Directive, but also has to adapt its work to the new Regulation. This work is intended to describe the situation and provide a recommended procedure when having to acquire personal data.
Recommended citation: R. Sanchez-Reillo, I. Ortega-Fernandez, W. Ponce-Hernandez, and H. C. Quiros-Sandoval, “How to implement EU data protection regulation for R&D on personal data,” in Proceedings - International Carnahan Conference on Security Technology, 2017, vol. 2017-Octob, doi: 10.1109/CCST.2017.8167797. https://ieeexplore.ieee.org/abstract/document/8167797
Published in Computer Standards & Interfaces, 2019
Biometrics R&D has to deal with personal data. From the Universal Declaration of Human Rights, privacy of a human being shall be protected, and this is addressed in different ways in each region of the world. In the case of the European Union, Data Protection Directives, Laws and Regulations have been established, and interpreted in different ways by each European Member State. Such a diversity has pushed the European Union to generate an improved regulation that will be mandatory from May 2018. Biometric R&D shall not only comply with the current Directive, but also has to adapt its work to the new Regulation. This work is intended to describe the situation and provide a recommended procedure when having to acquire personal data. The recommended procedure is illustrated by the implementation of a Biometric Data Acquisition Platform, used to acquire fingerprints from nearly 600 citizens using different sensors.
Recommended citation: [1] R. Sanchez-Reillo, I. Ortega-Fernandez, W. Ponce-Hernandez, and H. C. Quiros-Sandoval, “How to implement EU data protection regulation for R&D in biometrics,” Comput. Stand. Interfaces, vol. 61, 2019, doi: 10.1016/j.csi.2018.01.007. https://doi.org/10.1016/j.csi.2018.01.007
Published in Big Data and Artificial Intelligence in Digital Finance, 2022
General Data Protection Regulation (GDPR) has been in place since May 2018 to give EU citizens more control over their personal data, applying principles like security and privacy by design. One of the most powerful tools to allow data processing while being compliant with data protection regulations is anonymisation, a procedure that consists of transforming data in such a way that makes no longer possible the re-identification of the data subjects. This chapter describes how anonymisation can be performed at a large scale, addressing common challenges to become GDPR compliant.
Recommended citation: Ortega-Fernandez, I., Martinez, S.E.K., Orellana, L.A. (2022). Large Scale Data Anonymisation for GDPR Compliance. In: Soldatos, J., Kyriazis, D. (eds) Big Data and Artificial Intelligence in Digital Finance. Springer, Cham. https://doi.org/10.1007/978-3-030-94590-9_19 https://doi.org/10.1007/978-3-030-94590-9_19
Published in Energies (MDPI), 2023
The smart grid merges cyber-physical systems (CPS) infrastructure with information and communication technologies (ICT) to ensure efficient power generation, smart energy distribution in real-time, and optimisation, and it is rapidly becoming the current standard for energy generation and distribution. However, the use of ICT has increased the attack surface against the electricity grid, which is vulnerable to a wider range of cyberattacks. In particular, Denial-of-Service (DoS) attacks might impact both the communication network and the cyber-physical layer. DoS attacks have become critical threats against the smart grid due to their ability to impact the normal operation of legitimate smart-grid devices and their ability to target different smart grid systems and applications. This paper presents a comprehensive and methodical discussion of DoS attacks in the smart grid, analysing the most common attack vectors and their effect on the smart grid. The paper also presents a survey of detection and mitigation techniques against DoS attacks in the smart grid using reinforcement learning (RL) algorithms, analysing the strengths and limitations of the current approaches and identifying the prospects for future research.
Recommended citation: Ortega-Fernandez, Ines, and Francesco Liberati. 2023. "A Review of Denial of Service Attack and Mitigation in the Smart Grid Using Reinforcement Learning" Energies 16, no. 2: 635. https://www.mdpi.com/1996-1073/16/2/635 https://www.mdpi.com/1996-1073/16/2/635
Published in Wireless Networks (Springer), 2023
Anomaly detection in industrial control and cyber-physical systems has gained much attention over the past years due to the increasing modernisation and exposure of industrial environments. Current dangers to the connected industry include the theft of industrial intellectual property, denial of service, or the compromise of cloud components; all of which might result in a cyber-attack across the operational network. However, most scientific work employs device logs, which necessitate substantial understanding and preprocessing before they can be used in anomaly detection. In this paper, we propose a network intrusion detection system (NIDS) architecture based on a deep autoencoder trained on network flow data, which has the advantage of not requiring prior knowledge of the network topology or its underlying architecture. Experimental results show that the proposed model can detect anomalies, caused by distributed denial of service attacks, providing a high detection rate and low false alarms, outperforming the state-of-the-art and a baseline model in an unsupervised learning environment. Furthermore, the deep autoencoder model can detect abnormal behaviour in legitimate devices after an attack. We also demonstrate the suitability of the proposed NIDS in a real industrial plant from the alimentary sector, analysing the false positive rate and the viability of the data generation, filtering and preprocessing procedure for a near real time scenario. The suggested NIDS architecture is a low-cost solution that uses only fifteen network-based features, requires minimal processing, operates in unsupervised mode, and is straightforward to deploy in real-world scenarios.
Recommended citation: Ortega-Fernandez, I., Sestelo, M., Burguillo, J.C. et al. Network intrusion detection system for DDoS attacks in ICS using deep autoencoders. Wireless Netw (2023). https://doi.org/10.1007/s11276-022-03214-3 https://link.springer.com/article/10.1007/s11276-022-03214-3
Published in 2023 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), 2023
Advances in sensors, trackers and positioning systems had led to the emergence of multiple locationbased services (LBS), resulting in multiple devices and users reporting their precise position and raising many privacy concerns. Anonymisation of geo-positioned data can provide a high level of privacy to the end users, but usually at the cost of introducing high levels of information loss on the location reported to the LBS. This paper presents Hexanonymity, a new algorithm for the anonymisation of geo-positioned data which introduces a limited amount of information loss while providing k-anonymity. Hexanonymity leverages the Uber H3 geo-indexing system, which subdivides the earth into hexagonal meshes. We take advantage of a property of hexagon meshes, where for any of them, the distance from its centre to the centre of the six surrounding hexagons is always the same. This property allows the algorithm to generate high-quality clusters of geo-positioned data points, introducing a limited information loss. This new algorithm improves the current state-of-the-art in terms of the quality of the anonymised data points while providing a similar level of privacy, with a percentage of anonymised locations reduced by only 0.503% when compared to Adaptive Interval Cloaking. Hexanonymity leverages geo-indexing systems to offer a scalable approach to the anonymisation of geo-positioned data in linear time, suitable for big data and real-time scenarios.
Recommended citation: J. Rodriguez-Viñas, I. Ortega-Fernandez and E. S. Martínez, "Hexanonymity: a scalable geo-positioned data clustering algorithm for anonymisation purposes," 2023 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), Delft, Netherlands, 2023, pp. 396-404, doi: 10.1109/EuroSPW59978.2023.00050. https://ieeexplore.ieee.org/abstract/document/10190642
Published in 2023 JNIC Cybersecurity Conference (JNIC), 2024
En la actualidad, los bots generan una gran cantidad de trafico en las páginas web, lo que causa problemas como denegaciones de servicio a usuarios legítimos y dificulta su operacion normal. Este trabajo presenta un caso de éxito de transferencia tecnologica en el que se utilizan m ´ etodos de ´ deteccion de anomalías basados en Deep Autoencoders para desarrollar un modulo de detección de bots para paginas web de comercio electronico. El objetivo es identificar comportamientos anómalos que puedan ser causados por bots maliciosos. Se utiliza un modulo de captura en Javascript para recopilar datos de manera transparente al usuario y alimentar el modulo de detección casi en tiempo real, utilizando características bio-estadísticas que modelan el comportamiento de los usuarios al navegar por la web. El modulo se ha evaluado formalmente utilizando diferentes metricas, incluyendo la tasa de falsos positivos y el porcentaje de instancias identificadas como bot, demostrando su efectividad en la deteccion de bots avanzados.
Recommended citation: Mauro Saavedra-Golán, Ines Ortega-Fernandez (2023, 22 de junio). Detección de bots avanzados en comercio electrónico: un caso de uso real. Jornadas Nacionales de Investigación en Ciberseguridad [Conferencia]. Vigo, España. ISBN 978-84-8158-970-2, págs. 229-235 https://dialnet.unirioja.es/servlet/articulo?codigo=9041365
Published in 2023 JNIC Cybersecurity Conference (JNIC), 2023
The increasing adoption of the Industrial Internet of Things and integration of operational technology with information technology networks have made industrial control systems (ICS) more vulnerable to cyber-attacks, which can cause severe consequences such as disruption of critical infrastructure, loss of data, and significant financial losses. To enhance the security and resilience of these systems, anomaly detection in ICS has gained significant attention in recent years. This paper introduces ongoing research focused on using Long Short-Term Memory (LSTM) neural networks for forecasting and subsequent anomaly detection over device logs. This approach involves User and Entity Behaviour Analytics (UEBA) to analyze and define entities of interest from a real industrial plant and extract a baseline behaviour model through features that are fed into the LSTM model for predicting future events and detecting anomalies. The proposed solution has the potential to provide real-time detection of cyber and physical threats, thereby enhancing the security and resilience of industrial control systems.
Recommended citation: C. Piñón-Blanco, F. Otero-Vázquez, I. Ortega-Fernandez and M. Sestelo, "Detecting Anomalies in Industrial Control Systems with LSTM Neural Networks and UEBA," 2023 JNIC Cybersecurity Conference (JNIC), Vigo, Spain, 2023, pp. 1-8, doi: 10.23919/JNIC58574.2023.10205609. https://ieeexplore.ieee.org/abstract/document/10205609/
Published in Statistics & Computing (Springer), 2023
Neural Networks are one of the most popular methods nowadays given their high performance on diverse tasks, such as computer vision, anomaly detection, computer-aided disease detection and diagnosis or natural language processing. While neural networks are known for their high performance, they often suffer from the so-called “black-box” problem, which means that it is difficult to understand how the model makes decisions. We introduce a neural network topology based on Generalized Additive Models. By training an independent neural network to estimate the contribution of each feature to the output variable, we obtain a highly accurate and explainable deep learning model, providing a flexible framework for training Generalized Additive Neural Networks which does not impose any restriction on the neural network architecture. The proposed algorithm is evaluated through different simulation studies with synthetic datasets, as well as a real-world use case of Distributed Denial of Service cyberattack detection on an Industrial Control System. The results show that our proposal outperforms other GAM-based neural network implementations while providing higher interpretability, making it a promising approach for high-risk AI applications where transparency and accountability are crucial.
Recommended citation: Ortega-Fernandez, I., Sestelo, M. & Villanueva, N.M. Explainable generalized additive neural networks with independent neural network training. Stat Comput 34, 6 (2024). https://doi.org/10.1007/s11222-023-10320-5 https://link.springer.com/article/10.1007/s11222-023-10320-5
Published in Zenodo (Preprint), 2024
Nowadays, neural networks are considered one of the most effective methods for various tasks such as anomaly detection, computer-aided disease detection, or natural language processing. However, these networks suffer from the “black-box” problem which makes it difficult to understand how they make decisions. In order to solve this issue, an R package called neuralGAM is introduced. This package implements a neural network topology based on Generalized Additive Models, allowing to fit an independent neural network to estimate the contribution of each feature to the output variable, yielding a highly accurate and interpretable deep learning model. The neuralGAM package provides a flexible framework for training Generalized Additive Neural Networks, which does not impose any restrictions on the neural network architecture. We illustrate the use of the neuralGAM package in both synthetic and real data examples.
Recommended citation: Ortega-Fernandez, I., & Sestelo, M. (2024). neuralGAM: An R Package for fitting Generalized Additive Neural Networks. Zenodo. https://doi.org/10.5281/zenodo.10998650 https://zenodo.org/doi/10.5281/zenodo.10964608
Published in IX Jornadas Nacionales de Investigación En Ciberseguridad (JNIC 2024), 2024
As the landscape of industrial control systems (ICS) evolves, the security vulnerabilities inherent in these systems have become increasingly important. In response to this escalating situation, in this paper, we present the development of a virtualised cybersecurity research testbed tailored for these environments. Addressing the challenge of limited access to proprietary OT network data for research purposes, our work proposes a comprehensive framework for simulating industrial environments, aiming to facilitate the development and testing of cybersecurity solutions by providing functionalities for network traffic logging, attack impact simulation, generation of labelled multivariate time series sensor datasets, among others, bridging the gap between theoretical research and practical application needs.
Recommended citation: Carnero Ortega, D., Piñón Blanco, C., Pintos Castro, B., & Ortega Fernández, I. (2024). Development of a modular virtual Industrial Control System prototype for cybersecurity research. IX Jornadas Nacionales de Investigación En Ciberseguridad, 534-539. https://dialnet.unirioja.es/servlet/articulo?codigo=9633511
Published in IX Jornadas Nacionales de Investigación En Ciberseguridad (JNIC 2024), 2024
En el actual contexto de la era de la información, los analistas forenses se enfrentan al desafío de equilibrar la obtención de evidencia crucial en un vasto conjunto de archivos con la protección del derecho a la intimidad de las partes involucradas, ya sean empresas o usuarios individuales. Este equilibrio plantea un dilema: la búsqueda exhaustiva de evidencia puede comprometer la privacidad, mientras que un enfoque excesivamente cauteloso puede limitar la obtención de pruebas relevantes. En respuesta a esta problemática, en este trabajo proponemos una solución que emplea algoritmos de Inteligencia Artificial (IA) para identificar y extraer información relevante de cada archivo. Esta técnica permite llevar a cabo búsquedas heurísticas sobre los datos, lo que facilita la focalización en los archivos pertinentes del caso sin comprometer la privacidad de las personas investigadas. Además, esta metodología optimiza el tiempo empleado en el análisis forense al evitar la revisión minuciosa de archivos irrelevantes, logrando un enfoque más eficiente y preciso, y garantizando tanto la obtención de evidencia necesaria como el respeto a la privacidad de los individuos involucrados.
Recommended citation: Pintos, B., & Ortega-Fernandez, I. (2024). WhatTheFile, análisis forense basado en Inteligencia Artificial. In IX Jornadas Nacionales de Investigación En Ciberseguridad (pp. 600-605). Antonia M. Reina Quintero. https://dialnet.unirioja.es/servlet/articulo?codigo=9633521
Published in 2024 ACM Workshop on Information Hiding and Multimedia Security, 2024
Federated Learning (FL) has emerged as a revolutionary machine learning setting to enable collaborative training in a privacy-preserving way. However, recent research has showcased significant privacy attacks that pose a serious threat to the proliferation of FL as a technology designed to safeguard privacy during training with sensitive data from multiple entities. The rapid evolution of Privacy Enhancing Technologies offers promising methods for securing data inputs and outputs in FL scenarios. This paper evaluates and benchmarks the practical application of two PET methods, which has been integrated within a custom-built FL platform. The work conducts a comparative analysis of several privacy techniques applied to Federated Learning scenarios, with a primary focus on computational and communication performance.
Recommended citation: Loureiro-Acuña, J., Martínez-Luaña, X., Padín-Torrente, H., Jiménez-Balsa, G., García-Pagán, C., & Ortega-Fernandez, I. (2024). Enhancing Privacy in Federated Learning: A Practical Assessment of Combined PETs in a Cross-Silo Setting. Proceedings of the 2024 ACM Workshop on Information Hiding and Multimedia Security, 265–270. doi:10.1145/3658664.3659661 https://dl.acm.org/doi/abs/10.1145/3658664.3659661
Published in , 2024
Recommended citation: I. Ortega-Fernandez (2024). Machine Learning Approaches and Explainability for Real-Time Cyberattack Detection. Doctoral thesis, University of Vigo.
Hexanonymity is a new algorithm for the anonymisation of geo-positioned data which introduces a limited amount of information loss while providing k-anonymity. Hexanonymity leverages the Uber H3 geo-indexing system, which subdivides the earth into hexagonal meshes. We take advantage of a property of hexagon meshes, where for any of them, the distance from its centre to the centre of the six surrounding hexagons is always the same. This property allows the algorithm to generate high-quality clusters of geo-positioned data points, introducing a limited information loss.
Recommended citation: Rodriguez-Viñas, J., & Ortega-Fernandez, I. (2023). Hexanonymity: a scalable geo-positioned data clustering algorithm for anonymisation purposes (Version 1.0.0) [Computer software].
On December 8th, the merchant ship CSAV Toconao lost half a dozen containers off the coast of Portugal, containing millions of plastic pellets. Weeks later, the spill reached the shores of Galicia, causing one of the largest environmental disasters in recent years.
neuralGAM is a neural network framework based on Generalized Additive Models, which trains a different neural network to estimate the contribution of each feature to the response variable.
En esta ponencia presentamos los resultados obtenidos en un caso de uso real de aplicación de técnicas UEBA y Deep Learning para la detección de ciberataques y comportamientos anómalos en la infraestructura de Abanca. Entre las principales ventajas de nuestra metodología se encuentra la capacidad de incorporar una amplia variedad de fuentes de datos, el carácter no supervisado de los modelos, y una mayor interpretabilidad respecto a otros enfoques.
Undergraduate course, University of Vigo, Department of Statistics and Operative Research, 2014
Teaching the Statistics course at the Bachelor’s Degree in Business Administration and Management, including basic statistical concepts such as descriptive statistics, calculation of probabilities, random variables, and parametric inference.